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It is well known that the use of Eulerian coordinates for shock capturing methods
results in badly smeared slip lines, and that Lagrangian coordinates, while capable of
producing sharp slip line resolution, may result in severe grid deformation, causing
inaccuracy and even breakdown of computation. A unified coordinate system is
introduced in which the flow variables are considered to be functions of time and of
some permanent identification p§eudo-particlesvhich move with velocityhq, q
being the velocity of fluid particles. It includes the Eulerian coordinates as a special
case wherh =0, and the Lagrangian whem=1. For two-dimensional inviscid
flow, the free functiorh is chosen so as to preserve the grid angles. This results
in a coordinate system which avoids excessive numerical diffusion across slip lines
in the Eulerian coordinates and avoids severe grid deformation in the Lagrangian
coordinates, yet it retains sharp resolution of slip lines, especially for steady flow.
Furthermore, the two-dimensional unsteady Euler equations of gasdynamics in the
unified coordinates are found to be hyperbolic for all valuds, @xcept wher =1
(i.e., Lagrangian). In the latter case the Euler equations are only weakly hyperbolic,
lacking one eigenvector, although all eigenvalues are real. The consequences of this
deficiency of the Lagrangian coordinates are pointed outin connection with numerical
Computation. (© 1999 Academic Press
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1. INTRODUCTION

For over two hundred years, two different coordinate systems for describing fluid ma
have existed: the Eulerian system describes fluid motion at fixed locations, wheres
Lagrangian system does so following fluid particles. Accordingly, the Eulerian descrip
considers velocities and other properties of fluid particles to be functions of time an
fixed space coordinates. By contrast, the Lagrangian description considers the pos
of fluid particles and their other properties to be functions of time and of their permal
identifications, such as theirinitial positions or any set of material functions of fluid partic
Analytically, both coordinate systems are capable of producing exact solutions of
flow, including discontinuous flow. They are regarded as equivalent to each other (for
dimensional flow, the equivalency was proved rigorously by Wagner [1]), except that
Lagrangian system gives more information: it tells each fluid particle’s history. They
not equivalenfrom a numerical computation point of view.

Computationally, in using the Eulerian coordinates the computational cells are fixe
space, while fluid particles move across cell interfaces in any direction. It is this conve
flux that causes excessive numerical diffusion in the numerical solutions. Indeed, slip
are smeared badly and shocks are also smeared, albeit somewhat better than slif
Moreover, the smearing of slip lines ever increases with time and distance unless sj
treatments, such as artificial compression or sub-cell resolution, are employed [2—4] v
are, however, notalways reliable. The primary efforts of the CFD algorithm researchers:
the sixties have concentrated on developing better (more robust, accurate, and efficient
of dealing with this convective flux. Although great progress has been made and “per
to the point of near perfection and little return could be gained” [5], numerical diffusion ¢
exists, causing inaccuracy, and is even more difficult to handle in multi-dimensional
problems. Another disadvantage of the Eulerian coordinates is that a grid generation, \
can be time-consuming, is needed prior to flow computation in order to satisfy boun
conditions on solid boundaries.

Computational cells in the Lagrangian coordinates, on the other hand, are literally
particles. Consequently, there is no convective flux across cell interfaces and num
diffusion is thus minimized. However, the very fact that computational cells exactly foll
fluid particles can result in severe grid deformation, causing inaccuracy and even break
of the computation. To prevent this from happening, the most famous Lagrangian me
in use at the present time—the Arbitrary Lagrangian—Eulerian Technique (ALE) [6—¢
uses continuous re-zoning and re-mapping to the Eulerian grid. Unfortunately, this prc
requires interpolations of geometry and flow variables which result in loss of accur
manifested as numerical diffusion which ALE wants to avoid in the first place. Indee
was demonstrated in [9] that re-zoning results in diffusive errors of the type encounter
Eulerian solutions and continuously re-zoned Lagrangian computation is equivalent
Eulerian computation. Another disadvantage of the Lagrangian coordinates is that, exc
the simple case of one-dimensional unsteady flow, the governing equations for inviscid
are not easily written in conservation form, making it difficult to capture shocks correc

After a series of studies [10—17] on steady supersonic flow, it was found that the ac
tages of Lagrangian coordinates arise from computational cells moving in the directic
the fluid particles but not with their speeds. It was also found that literally following flt
particles, as does Lagrangian, not only causes computational cells to deform with the
but also renders the governing equations for inviscid supersonic flow not fully hyperb
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as there is no complete set of eigenvectors, although all eigenvalues are still real. Witt
discovery, the generalized Lagrangian method [18] was introduced for steady super:
flow and was shown to be superior to the Eulerian and the classical Lagrangian met
especially in resolving slip lines and shocks.

In this paper we extend the above idea to unsteady flow by introducing a new descrif
of fluid motion in which the flow variables (velocities, pressure, density, etc) are conside
to be functions of time and of some permanent identificationssefido-particlesvhich
move with velocityhg, g being the velocity of fluid particles aridarbitrary. This turns out
to be a unified description, ranging from Eulerian wimes 0 to Lagrangian wheh =1,
and the freedom in choosirtgmakes it possible to avoid the disadvantages of excess
diffusion across slip lines in the Eulerian description and of severe grid deformatior
the Lagrangian description. For these purposes, the choicg¢mpreserve grid angles in
two-dimensional flow has been shown in this paper to be most successful.

The extension from steady supersonic flow to unsteady flow is not trivial, but it then allc
us not only to compute unsteady flow but also to compute steady subsonic, supersonic
transonic flow as the asymptotic state of unsteady flow for large time.

This paper is organized as follow: in Section 2 we introduce the unified coordina
whereas Sections 3 and 4 discuss the mathematical properties of the 2-D unsteady
equations of gasdynamics written in the unified coordinates. Section 5 outlines the nume
solution strategy and Section 6 gives details of the Riemann solution needed in the num:
procedures described in Section 7. Section 8 gives results of the numerical computa
on four test problems and compares them with corresponding results based on Eul
or Lagrangian coordinates, showing the advantages of the unified coordinates. Fir
conclusions are given in Section 9.

2. THE UNIFIED COORDINATES

Starting from Cartesian coordinatés y, z) and timet in the Eulerian description, we
make a transformation to coordinai@s &, n, ¢),

dt =dx (1a
dx = hudix + Ad¢ + Ldn + Pd¢ (1b)
dy = hvdA + Bdé + Mdn + Qd¢ (10
dz= hwdA + Cd¢ + Ndn + Rdg, (1d)

whereu, v, andw are thex, y, andz components of fluid velocity, respectively. Let
Dh @ 9 d 9

denote the material derivative following theeudo-particlewhose velocity i$1q. Then, it
is easy to show that
Dné Dnhn Dn¢
- = O’ _— = 0’ _— = 0, 3
Dt Dt Dt &)
that is, the coordinate&, n, ¢) are material functions of the pseudo-particles, and hen
are their permanent identifications. Accordinglgmputational cells move and deform with
pseudo-particlesrather than with fluid particles as in Lagrangian coordinates.

Remarks. (a) Unlike transformations used in grid generation, which are flow-indepe
dent, the unique feature of transformation (1) is it depends on the fluid velocity.
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(b) In (1), h is an arbitrary function of coordinates,, &, , ¢). On the other hand,
(A, L, P,B, M, Q,C, N, R) are determined by the compatibility conditions. For exampl|
for dx to be a total differential,

9A _ a(hu)
T 0E (49
oL _ ahu)
7= o (4b)
aP _ athu

When (4) are satisfied the other compatibility conditions, namely

<
>
<
=

o = o (5a)
oL P
% = an (5b)
P A
% = A (59)

are also satisfied, provided that they aré at0 which can always be ensured in numeric:
computation. Similar equations and discussions holdBM, Q) and(C, N, R).

(c) Inthe special case whén=0, (A, L, ..., R) are independent of. Then the coordi-
nateg, n, ¢) areindependent of timeand are hence fixed in space. This coordinate syst
is thus Eulerian. Transformation (1) is then flow-independent and is just like any other tr
formation from Cartesian coordinatés, y, z) to curvilinear coordinateé&, n, ¢) used in
grid generation. In particular, A=M =R=1andL=P=B=Q=C=N=0, (¢, 1, ¢)
are identical with Cartesian coordinates y, z).

(d) In the special case whem=1, on the other hand, the pseudo-particles coinci
with fluid particles andé, n, ¢) are the material functions of fluid particles, and hen
are Lagrangian coordinates. The conventional choice of the Lagrangian coordinates
(&,1n,¢0)=(X,Y, 2)|t=0, iS just a special choice of material functions, corresponding
choosingA=M =R=1andL =P =B =Q=C =N =0. Itdoes not offer any particular
advantage in numerical computation; rattéerm, ¢) should better be left to be suitably cho
sen to initialize numerical computation. In particular, the computational dom& in ¢)
space can always be easily made regular, e.g., rectangular, even ifitis irregular in the y
cal space. This cannot be done with the conventional choice of the Lagrangian coordir

(e) Inthe general cask s arbitrary. It thus provides a new degree of freedom which m
be used to advantage: to avoid excessive numerical diffusion in Eulerian coordinates,
avoid severe grid deformation in Lagrangian coordinates. It will be shown in the next se
(see Section 3.2) that for 2-D flolwmay be chosen to render the coordinates orthogor
this would give an optimal grid.

3. EULER EQUATIONS IN THE UNIFIED COORDINATES

The Euler equations in Cartesian coordinates for inviscid flow of an ideal gas obe
they-law are

P pu PV pw

ou pu2—|— p puv puw
9 B B ) B VW
| PV |t puUv + | Pv°+P [+ =0, (6)
at ax ay 0z 2

pw puw pvw pwe+ p

pe pu(e+§) ,ov(e+§) pw(e—f-g)
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wherep, p, ande are the density, pressure, and specific total energy of the gas, with

1
(u +v —i—w)—i——E @)
Under transformation (1), the Euler equations (6) become
8E 8F G aH
) (8)
35 3':
where
" oA T ol
pAv plv 4+ p&yA
pAe ,0|(9+;'?)— P& A
A —hu
E=| B |, F= —hv
C —hw
L 0
M 0
N 0
P 0
Q 0
L R | 0
0J [ pK
pJu+ pnxA pKU+ pixA
pJv+ pnyA pKv + pryA
pJdw + pnzA pKw + pgA
PJ(eJr;p)— pne A pK(e+;f’)— P A
0 0
G= 0 , H= 0 9)
0 0
—hu 0
—hv 0
—hw 0
0 —hu
0 —hv
L 0 ] —hw
with
A L P
A=detf B M Q
C N R
|=A%, ‘]_A%’ K:A%,
Dt Dt Dt
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and

D E.n.0) _ (a(t,x, y.2) )‘1
It.x.y.2  \o.én.0))

We note that:

(a) the system of equations (8) is in conservation form;

(b) the last 9 equations of (8) arise from the compatibility requirements of transforma
(2). They are calledeometric conservation laws contrast to the physical conservatiol
laws in the first 5 equations; and

(c) system (8) is larger than system (6) in Eulerian coordinates, as there are no
equations for 14 unknowns, p, u, v, w, A, B, ..., R. However, the additional computing
costs for solving (8) are quite small, because the bulk of computing time is spent on so
Riemann problems of the physical conservation laws (see Sections 6—8 below), whic
the same for (8) as for (6). In fact, in some cases, such as 2-D steady supersonic fl
takes less time to solve (8) than to solve (6). (see [15])

As remarked earlier the unified coordinate system is Lagrangian tvkeh In this case
system (8) is the equations of motion in Lagrangian coordinates which are now writte
conservation form. In this regard, it should be pointed out that it is difficult to write the ¢
ventional Lagrangian equations in conservation form except, of course, in the special
of 1-D unsteady flow [19]. In the Appendix we re-write the 2-D conventional Lagrang
equations of motion for inviscid flow into conservation form and show that they are a spe
case of our system (8) (or its 2-D version (12)) whres 1, as they should.

In the remainder of this paper we shall restrict our discussions to the two-dimensi
flow.

3.1. Hyperbolicity of the 2-D Unsteady Euler Equations in the Unified Coordinates

It is well known that the system of unsteady inviscid flow equations (6) in Cartes
coordinates is hyperbolic, meaning that all its eigenvalues are real and there exists a co
set of linearly independent eigenvectors. Because the transformation(ffrany, z) to
the unified coordinateé., &, n, ¢) involves the dependent variablés, v, w), there is no
guarantee that the resulting system (8) will necessarily be hyperbolic. We now stud)
hyperbolicity of system (8) in the two-dimensional case.

For two-dimensional unsteady flow, the Euler equations are

0 pu oV
d u a0 uz 4+ 0 puv
LAl N PR B O ) =0, (10)
ot | pv 0X puv ay pve+p
e P p
P Pu(e+ p) pv(e+ ;)
where
1, 2 1 p
e=—(u .
2( +v9) + I
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Under the transformation

dt = dx (113
dx = hudx + Adé + Ldn (11b
dy = hvdx + Bdé + Mdp (110
we get
oE oF oG
— 4+ — 4+ — =0, 12
oA + 0& + on (122)
where
PA p(1—h)l p(1—h)J
pAU p(l—=h)lu+ pM p(l—h)Ju— pB
pAv p(l—h)lv—pL p(L—h)Jv+ pA
A —hu 0
B —hv 0
L 0 —hu
M 0 —hv
(12b)
with
A =AM - BL, | =uM — L, J = Av — Bu. (13)

We note that the Euler equations (12) written in the unified coordinates are in conserve
form.
To study the hyperbolicity of (12), we re-write it as

aU auU auU
A—+B—-+C—=5 14
o o + an (14)

where
U = (p’ pa u7 v’ Aa Ba La M)T

- P oA
ou ou

)

oy’
S=(0,0,0,0,uh, vhe, uh,, vh,)".

System (14) is said to be hyperbolic (also called strongly hyperbolic, or fully hyperbo
in A if [20]

(i) all the eigenvalues of
detcA —aB—-BC)=0

are real for every paife, B) € R? : «®> 4+ 2 = 1; and
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(ii) associated with the eigenvalues there exists a complete set of eight linearly inde
dent right eigenvectors in the state space.

System (14) is said to be weakly hyperboliciif (i) is satisfied but there does not exist ¢
complete set of linearly independent right eigenvectors.

The eigenvalues of (14) can be found using a method similar to [17], and the result
as follows:

Case (a): h£1. Inthis case, we get

01=0 (multiplicity of 4)
o2 = (1—h)(@'u+ B'v) (multiplicity of 2) (15)

oy =07+ 61\/01/2 —l—,B/z,
wherea is the speed of sound, and
o =@M —BB)/A, B =—(aL — BA)/A.
The corresponding right eigenvectors are

rl = (07 O’ 07 O’ 19 O’ 0’ O)T
r,=(0,0,0,00,1,0,0)"

(16)
rs=(0,0,0,0,0,0,1,07
rs=(0,0,0,0,0,0,0 17
for oq,
rs = (0,1,0,0,0,0,0,0)"
re = (0,0, boy, 02, —abh, —ah, —Bbh, —,Bh)-r a7
for o, and
1 ch adh Bch  Bdh\'
r7,8= (11 _2’:|:C3 :l:ds :Fa—’ :Fa—, :Fﬁ—’ q:lB—> (18)
a 04 o4 O+ o4

for o1, where

a/ ﬁ/
b=-g/d, m=aye’+p*, c=—,  d=-—.
B'/a a”+ B om o

The eigenvectorsy, ro, .. ., rg are linearly independent, forming a complete basis in t
state space; system (14) is therefore hyperbolihfgrl. This includes the Eulerian case
as special case whémn=0.
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Case (b): h=1 (Lagrangian Case). In this case the eigenvalues are

01=0 (multiplicity of 6)

oL = :I:a\/ 06/2 —+ ,3,2. (19)

The eigenvectors associated with are

/ ’ / / / rN\NT
I’iz(l 1 o B —ao —ap —a'B  —BB ) (20)

a2 poy por p(02)? p(0s)? p(01)2 p(ow)?

Associated withr; = 0 (multiplicity of 6),
rankcA — aB — ,BC)|0=(71 =3
hence there exist five, and only five, linearly independent eigenvectors:

r1=(0,0,00,1,0,0,0)"
r,=(0,0,00,0,1,0,0)"
rs=(0,0,0,0,0,0,1,07 (21)
rs=(0,0,0,00,0,0,1)7
rs=(0,1,0,0,0,0,0,0)".

We therefore arrive at the conclusion that the system of unsteady 2-D Euler equat
of inviscid flow in Lagrangian coordinatés weakly hyperboliclacking one eigenvector
although all eigenvalues are real. This is rather surprising in view of the facts that
system of unsteady Euler equations in Eulerian (Cartesian) coordinates is long knov
be hyperbolic and that it has hitherto been taken for granted that the system in Lagrar
coordinates is also hyperbolic. This turns out to be true only in the simple case of
dimensional unsteady flow [21], but is not true for two-dimensional flow. This degener:
from hyperbolic to weakly hyperbolic may be traced back to the fact that transformat
(11) involves not only the independent variables but also the dependent variabied,
v. In this regard we note that in the cakes 1, e.g.,h=1/2, the transformation (11)
also involvesu andv but does not lead to degeneracy, as shown in Case (a). So thel
something peculiar abobit= 1, i.e., Lagrangian coordinates. That the 2-D Euler equatio
in conventional Lagrangian coordinates are weakly hyperbolic is shown, and related tc
present formulation, in the Appendix.

The lesson to be learned is that it is insufficient to literally follow fluid particles |
describe their motion, as the Lagrangian coordinate system does, because the syst
inviscid unsteady flow equations is only weakly hyperbolic. Being only weakly hyperbol
it does not possess the many desirable properties of a strongly hyperbolic system
instance, (a) the system cannot be written in characteristic form, rendering the pow:
method of characteristics inapplicable; (b) its solution may grow unbounded; (c) the Ic
Riemann problem may have no solution; and (d) the Cauchy problem may be not well pc
Despite these possible defects, some of our computation$iwithencounter no difficulty
and produce results almost identical to thattfer 0.99. But this is not guaranteed, and we
shall not present computational results for the dasel. We also note with interest that
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some promising work on shock capturing methods for weakly hyperbolic systems ha:
appeared [22].

In summary, use of Lagrangian coordinates in CFD for two-dimensional unsteady
not only can cause severe cell deformation but also renders the Euler equations w
hyperbolic, with all its possible consequences on numerical computation. In this reg
the unified coordinate system with-# 1 (no matter how closé is to 1), being strongly
hyperbolic, is superior to the Lagrangian coordinate system.

Although the hyperbolicity of the system of Euler equations is discussed in this ps
only for the case of 2-D unsteady flow, we mention here the corresponding results in
cases:

(a) For 1-D unsteady flow, the system of equations in the unified coordinates is stro
hyperbolic for all values off [21].

(b) For 3-D unsteady flow, it is strongly hyperbolic for all valuesha#xcept forh =1;
in the latter case it is only weakly hyperbolic.

(c) For 2-D steady supersonic flow the system of Euler equations resulting from
transformation

{dx:hudA+Ad$ 22)

dy = hvd). + Bd

is strongly hyperbolic for anfi(i, &) except whet = 1, orh = constant; in the latter cases
it is only weakly hyperbolic.

(d) For 3-D steady supersonic flow, the system of Euler equations resulting from
transformation

dx = hudir + Ad§ + Ldp
dy = hvdx + Bdg + Mdy (23)
dz=hwdi 4+ Cd§ + Ndp

is quite similar to (12), but it is only weakly hyperbolic for ahyalthough the sub-system
representing the physical conservation laws and the sub-system representing the gec
conservation laws are each strongly hyperbolic [17].

3.2. Determination ofh

As mentioned earlier, the chief advantage of the unified coordinates is the new de
of freedom in choosindp. Many choices are possible and the simplest one would be
choose a constant value for it. Numerical experiments for conktall be presented in
Section 8 to show its effects on grid deformation and on resolution of flow discontinuitie:
general, it is necessary to restricto within the range & h < 1. Forh > 1, the eigenvalue
o2 in (15) has sign opposite to that for< 1, indicating that signals propagate in the wron
direction. Our computations fdn > 1 break down immediately. On the other hand, fc
h < 0, which means that the pseudo-particles are moving in a direction opposite to th
the fluid particles, computation can be carried out initially but after some finite time it bre
down also. No difficulty has been encountered in all our computatiomssifestricted to
0<h < 1. Our computer code actually also works in many caseh fod (recall that the
Euler equations are only weakly hyperbolic), producing results which are indistinguish
from results usindn = 0.99 (for which the Euler equations are strongly hyperbolic).
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A good choice foh is to preserve the grid angles in the solution process which marcl
ina,ie.,

o {V_s . &] o 24)
or [IVE] |V
Since
Ve = (M, —L)/A

condition (24) becomes

(26)

] [ AL+ BM ]_
Or | /AZ+ B2J/L2Z + M2 -

By making use of the last four equations of (12), it is easy to show that (26) is equivaler

ah ah u 9 u 9
210 1T (B A 2 (ME L) |, 27)
0§ an 0§ & an an
where
F=L%2+M?2 T2=A%4+B2% (28)

A consequence of determinirigfrom (27) is that if the grid is orthogonal at=0 it
will remain so for subsequent An orthogonal grid is known to possess many desirab
properties over non-orthogonal grids, e.g., attaining higher accuracy than non-orthog
grids.

Computationally, Eq. (27) is to be solved at every time step after the flow variab
Q=(p, p,u,v)" and the geometric variablé = (A, B, L, M)T are found. It is thus a
first-order linear partial differential equation fo(¢, n; 1) with A appearing as a parameter.
To find solutionh in the range

O<h<1 (29)
we note that (27) is linear and homogeneous, and therefore it possesses two prope

(a) positive solutiorh > 0 always exists, and (b) ifis a solution to (27) so is/C, C being
any constant. Making use of property (a), wedet In(hq) to get

. 0 . 0
FP(Acosd — Bsm@)% +T2(Mcost — L sm@)a—g
n

:SZ<BBCOSG—Aasm9>—T2<MBCOSG—LaSIn9>, (30)

0 o an an

whereq=+/u? + v2 and@ is the flow angleu=qcosd, v =qsind. Now, if g; is any

solution to (30) therh =¢e%/qC is a solution to (27) satisfying condition (29), providec
that we choos€ equal to the maximum a®: /q over the whole flow field being computed.
The reason to work with khq) instead of Irh is that from our experience with steady
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flow [15], hq is continuous across slip lines, and hence working Wigltan minimize the
numerical errors. This is confirmed in our unsteady computation on the four test problet
Section 8.

Numerically, Eq. (30) is solved easily by the method of characteristics if their slope:
not change sign as in example 1; otherwise it is solved by iteration.

We note in passing that an extended Lagrangian method in which streamlines are u:
coordinate lines was given in [5] for 2-D unsteady flow, and excellent resolution of slip i
was obtained with asymptotic approach to steady flow over time. However, any strear
coordinate system will encounter difficulties if the initial flow is at rest (see, e.g., examg
in Section 8) or if there is an interior stagnation point, because the transformation w
be singular there and the unknown functions become multi-valued. Indeed, the ge
transformation from Cartesian coordinat&sy) to streamline coordinatd$, n) is

dt =dx
dx = Ldx + huds + Adp (31)
dy = Mdx + hvdé + Bdn,

whereh is arbitrary. Clearlyy = const. corresponds to an instantaneous streamline. -
Jacobian of this transformation is equahi@ B — v A), which vanishes at stagnation points
rendering the functions multi-valued. In our system, the coordinate lines are pathling
the pseudo-particles which avoid these difficulties, and yield excellent resolution of
lines as seen in Section 8. Indeed, the Jacobian of our transformatosi8M — BL,
which is the area of the computational cell in the physical plane and is never zero ir
computations.

4. BOUNDARY CONDITIONS AND RESOLUTION OF DISCONTINUITIES

In this section we point out some advantages of the unified coordinate system over
of the Eulerian in the following three aspects:

4.1. Boundary Conditions on Solid Boundaries
Consider a time-independent solid boundary (this includes steady flow as a special

S B(x,y,z)=0. (32)
The boundary condition on it is

q-vB=0 ons, (33)
hence

hg-vB =0 onsS. (34)
Equation (33) implies that fluid particles move & whereas (34) implies that pseudo
particles also move o8. Therefore Sis a material function of the pseudo-particles. Col

sequentlyB(X, y, z) can be taken to correspond to one of the coordingtesay. In other
words, a coordinate surface in the unified coordinate system can be taken to repre
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time-independent solid surface and there is no need for a grid generation prior to
computation, as is needed if Eulerian coordinates are used.

4.2. Slip Line Resolution

In steady flow, pathlines are identical with streamlines. Hence a slip line coincides v
the streamline of a fluid particle and, therefore, also with the streamline of a pseudo-par
Consequently, it can be taken to correspond to one of the coordifatsy, thus avoiding
the Godunov averaging across it. Hence, in the unified coordinate system a slip line
be sharply resolved. This is in direct contrast to the Eulerian coordinates where a slip
does not coincide with a coordinate line and, as a result, the Godunov averaging acr
slip line in a computational cell will forever smeatr it.

For unsteady flow, pathlines are in general distinct from streamlines. While a slip line
coincides with the pathline of a fluid particle, it does not always coincide with a streamli
Hence, a slip line does not always coincide with a coordinate line in the unified coordir
system. In this regard, numerical experiments (Section 8) clearly indicate the trend
slip line resolution increases with increasim§rom h = 0 (Eulerian) tch = 1 (Lagrangian)
and the unified coordinates using grid-angle presertingq. (27), yield better slip line
resolution than the Eulerian coordinates. Furthermore, if a steady flow is computed &
asymptotic state of unsteady flow for large time, sharp resolution of slip lines is achie
whenh is determined by (27), which at the same time avoids severe grid deformation.

4.3. Shock Resolution

In using the unified coordinate system for flow computation, once the grid is set initi
it is subsequently generated by the motion of the pseudo-particles. In this regard,
interesting to note that the pseudo-particles, which move parallel to the fluid particles, 1
to crowd together when compressed, resulting in automatic refinement of the grid in
compression region. Consequently, shock resolution is improved in the unified coordir
over the Eulerian. Moreover, the improvements increase with increasing shock streng

5. SOLUTION STRATEGIES

From the above discussion, we see that the system of Euler equations (12) is poten
superior to its counterpart (10) using Eulerian coordinates in slip line resolution, espec
for steady flow. Furthermore, with determined by the grid-angle preserving conditior
(27), it can avoid the severe grid deformation encountered in the Lagrangian coordina

As the system of Euler equations (12) is in conservation form, any well-establisl|
shock capturing method can be used to solve it. We shall use the Godunov method
the MUSCL update to higher resolution to solve system (12). The computation will
done entirely in the.—£— space. A physical cell in thge—y plane marching along the
pseudo-particle’s pathline corresponds to a rectangular cell ig-thglane marching in
the A direction in the computational spate&—n. The superscrigt refers to the marching
time step number and the subscriptnd j refer to the cell index number on a time plane
A = const. The time step Ak = A¥*1 — )X is uniform for alli andj, but is always chosen to
satisfy the CFL stability condition. The grid divides the computational domain into cube
control volumes, or cells, which in the and direction are centered &k, &, nj) and
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have widthsA& =& 11> — & _1/2 and Anj = nj+1/2 — nj—1/2 (for all k). Unless otherwise
stated we shall use uniform cell widtkg; for all i andAn; for all j.

In the physical spacé, x, y) a cuboid cell marching i, &, n) space corresponds to &
pseudo-particle marching along its path tube with &tepAt = AL). The pseudo-particleis
bounded by four path surfaces=&..1,» andn = n;+1/2 around it. Initially, any curvilinear
coordinate grid on the—y plane may be used as t§en coordinate grid and the initial
geometric variable& = (A, B, L, M)" can be determined frorfl1) as part of the initial
conditions. A stationary solid wall is always a path surface of the fluids and hence als
the pseudo-fluids; it is therefore a coordinate surface.

We shall apply the Godunov scheme [23] with MUSCL update [24] to s@2e Ap-
plying the divergence theorem to (12) over the cuboid @elj, k) results in

EkH_ gk _ AX (Feedz gz
= EL T Ay Tivrzg T Ricagag

ALK K K . .
- A—m(eiﬁ/f/z—eiﬁ/f/z), i=12...mj=12....n (35

where the notation for the cell average of any quantitg

fk 1 /Ei+1/z /711+1/2 f( K £ )df;‘d (36)
P R — )\’ ’ ’ n r”
b ASiAnj &i—12 JInj-12

and the notation for timg average off is

kL

k+1/2 1

fi-:—l//Z.j = m /}Lk f()‘séi#»l/Zv n])d)‘s (37)
12 1 skt

fi$j+1/2 = m " f()héi»nj+1/2) da. (38)

According to Godunov’s idea, the cell interface flugS,/ | andG; /7, for the cell
(i, J) should be obtained from the self-similar solution of a local two-dimensional Riem:
problem formed by the averaged constant s@te= (o, p, u, v)Ij of the cell(, j) and
those of its adjacent cells. Unfortunately, such a solution to (12) is unavailable at
present time. Indeed, even a 2-D Riemann solution to the simpler system (10), whicl
special case of12) whenh =0, is not yet available. On the other hand, it is known th
a monotone difference scheme to a general conservation form converges to the phys
relevant entropy-satisfying solution. In particular, Crandall and Majda [25] establish
rigorous convergence for dimensional splitting algorithms when each step is approxin
by a monotone difference scheme (such as the Godunov scheme) for a single consel
law of multi-dimension.

In view of the above, we shall numerically soly&2) using a Godunov-type scheme
based on the following strategies: a time step-wise Eulerian approximation to decc
the geometric conservation laws from the physical conservation laws, and a dimens
splitting approximation to reduce the two-dimensional flow problem to two one-dimensic
flow problems. These are explained as follows.
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5.1. The Time Step-Wise Eulerian (TSE) Approximation

The essence of TSE is that while solving the physical conservation laws (the first 1
equations of (12)) for the flow variabl€d= (p, p, u, v)' in the time step of from AK
to Akt1, the geometric variabld§ = (A, B, L, M)T andh are kept unchanged with but
are in general functions ¢f andn; hence the effects of cell shapes (grid) on the flow ar
accounted for in a time-frozen manner. More precisely, in solving the physical conserva
laws inQX(1) : Ak <A <2k we useK = K (A%, £, n) andh =h()K, &, n). After obtaining
the solutioQ(x, &, 1), A € QK(1), we update the geometric conservation laws (the last fo
equations of (12)) to ga€ (A¥*1, £, ) (this is a rather trivial step) and then solve (27) tc
geth(A¥t1, £, n) as explained in Section 4. In this way the effects of the flow on the ¢
shapes are taken into account. This completes the advancing of solution for one time
from A = AXto 2 = Ak*t1 and the process can be repeated to advance the solution for the |
time step.

Physically, the TSE idea is equivalent to temporarily freezing the shape of the fl
particles ovei2¥(1) while the flow field evolves. Mathematically, the problem of solving
the physical conservation laws ov@f (1) keepingK andh frozen is equivalent to that of
solving the Euler equations in fixed curvilinear coordinatgs;) with coefficients in the
governing equations varying fnandy. The Riemann problem in the curvilinear coordinate
is more difficult than that in Cartesian coordinates but is solvable as will be explainec
Section 6.

At this point it is necessary and possible to comment on the equivalence of the w
solution of the extended system (12) to that of the Eulerian system (10). As show
Section 3.1 the extended system has an additional eigenwata® (multiplicity of 4) cor-
responding to the geometric conservation laws. Since this eigenfield is linearly degener
it might be anticipated that the solution of the extended system possesses a new slip li
addition to the slip line correspondingdg of Eq. (15). We note that this isotthe case for
one-dimensional flow [21] but, unfortunately, no theoretical result is available at pres
for the two-dimensional case under consideration. On the other hand, in using the
approximation to solve the extended system, this additional eigenfield does not come
play (because the geometric varialleandh are treated as given) and the extended syste
is truncated and reduced to the Eulerian system in curvilinear coordinates. Therefore
weak solution of the extended system as obtained by the time step-wise Eulerian me
is equivalent to the weak solution of the Eulerian system. Any differences between the
solutions must arise from the different grids used, and it is the purpose of this paper to <
that such differences are indeed very significant; see Section 8.

5.2. Dimensional Splitting Approximation

The dimensional splitting technique for finding an approximate solution to the Riem:
problem in multi-dimensional flow is now well established and used widely. This technic
renders the solution of a multi-dimensional problem to a sequential solution of several «
dimensional problems. The Godunov splitting and the Strang splitting [26] are freque
used in practical applications. Theoretically, if the time accuracy of the one-dimensic
solution is of the first order, both of these two splitting techniques are also first-order t
accurate. But our numerical test on the two-dimensional Riemann problem (the first
example) shows that the Strang splitting gives more accurate results. Thus we shal
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the Strang splitting in this paper. Lé@,\ represent the exact solution operator for the 1-
equation in the.— plane andC}, similarly defined; then

Q= £, £1,£%, Q" (39)

whereA) =kt — 1k,
The solution operatot,, for the Riemann problem with variable coefficients in th
governing equations in the-¢ plane will now be given in detalil.

6. THE RIEMANN SOLUTION IN THE A—§ PLANE

Based on the solution strategies explained in the last section, the key step is the
tion to the 1-D Riemann problem over the time sf@fi)) : Ak < A < Ak+1 resulting from
dimensional splitting and the time step-wise Eulerian approximation.

In this section, we explain how to derive the 1-D Riemann solution imtHeplane,
in particular the flow variabl€ at the interfacet =0 for A € Q(1). The 1-D Riemann
problem in ther—n plane can be obtained similarly.

From (12), at time step* (to be taken as 0 for simplicity) the 1-D physical conservatic
law equations in thé— plane resulting from dimensional splitting are

IE, oF,
R A re Q) : A< Al 4
MJrag 0, €Q():0< <AL (40a)
where
pPA p(L—h)l
AU 1-h)lu M
E, = 14 . Fp= o( Jlu+p (40b)
pAV p(l—h)lv—pL
pAe p(l—h)le+ pl
with
1 1
A=AM—BL, I=uM-ul, e=-@+)+—2P (a1
2 y—1p

In (40), the physical variable® = (p, p, u, v)" are regarded as (unknown) functions c
A and & while the geometric variable§ = (A, B, L, M)T andh, which appear in the
equations’ coefficients, are independent.of.e.,

K =K(, &), h=h(0,§&). (42)

n in (40) is treated as a parameter. In applying the Godunov scheme to advance the sc
from 1 =0 to A = A, the initial data for the adjacent celis, j) and (i +1, j) are the
following Riemann (constant) data (for simplicity we take the cell interface between tf
two cells to be located &t = 0):

Q|)x=0 — {QZ(: i)h,j;o)v s <0

(43)
Qr (=QifL)). §&>0.
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At the same time, based on the time step-wise Eulerian approximation, the coefficien

Egs. (40) are

mmwmm={

(K, h);=0(=(K, h)7°). §<0
K, =2 (=K, D),  &>0.

(44)

We note that these coefficients are constants separatélyfOrands > 0, butare in general

not equal to each other.

To put the Riemann problem in the¢ plane more explicitly in one-dimensional form,
we note that the normal direction of the plane constant is

43
n=—-=(M,-L)/S 45
Vel / (45)
and project the flow velocity into the normal directiom and the tangential directidrto
get
w=0g-n=UM-vL)/S
{r=q~t:(uL+vM)/S. (46)
We also replacélL, M) by Sandy as
S=+LZ+ M2 (a7)
tany = M/L.

We shall now transform (40) fof <0 and foré > 0, separately. Fof <0, (K, h) =
(K, h), are constant. Hencéa = A,, S= S, andy =, are also constant, and Egs. (40

become
oE, oF,
0 4 — 0’
o o0&
where
0
pw
E, = A or | F, =
pe

Similarly, for¢& > 0 Eqgs. (40) become

0E, , oF _,
an e
with
0
E=nal|"| ¥
pT
pe

AeQM),E <O, (483)
p(1—hpw
_ 2
p(l—=hyw®+p (48b)
p(1—hywt
o(1—hpwe+ wp
LeQM), £>0 (49a)
p(1—h)ow
_ 2
p(1—h)w+p (49b)
p(1—hwt

p(1—h)we+wp
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These equations (48) and (49) are in the same form as the system

P pu
a B 2
E I o B Y (50)
ot | pv X puv

pe pue+up

obtained from the Euler equations in Cartesian coordinates after dimensional splitting
equatew with u andt with v; hence they can be solved by a similar method. We note tl
in each of the systems (48), (49), or (50) the coefficients are constanfxgugrand the
variablev (or 7) can be decoupled. We also note that the Riemann problem consistin
(48), (49), and initial condition (43) has a new feature—and hence new difficulty—in 1
the coefficients, though constant, in general are differerg fol as foré > 0.

6.1. Special Case(K, h), = (K, h),
We consider first the special case when the constants are equal, i.e.,
(K, *=0 = (K, h)»=% = (K, h)*=°. (51)

In this case, (48) and (49) are identical and become

oE"  oF
— = re QA 2
T 5% 0, € Q(), (52a)
where
P p(1—ho
1—h)w?
oT p(1—howrt
pe p(1—hwe+ wp

andA, S, andh are constant.
Equations (52) become, after decoupling the tangential velocity compentré con-
ventional Riemann problem for a 1-D unsteady flow,

9E"  OF"
ot T reQM) (53a
A=0 (107 pa Cl))[, S < O
» P, = 53b
(0. p. o)l {(p, p.wy. £>0, (530
where
E'=A ( J20) ) , F'=S| pl-hw?+p (53c)
per o(1—hywe, + wp
with
1 1

e =cwtt— P (53d)
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The tangential velocity componentcan be found , after solving (53), from

d(pAT)  I(S(1—h)pwt)
o T 9E -

which can be simplified to, after using the first equation of (53a),
ar  (1-h)S ot

0, (54)

Y + A a)£ =0 (559
. £E<0
T = {Tr, £ 0. (55h)

Now sinceA, S, andh are constant in (53), the Riemann problem (53) can be solv
in exactly the same way as solving the 1-D unsteady flow equations of gasdynamics
usual, the physical entropy condition that the entropy of a fluid particle shall not decreas
crossing a shock is imposed to select the physically correct solution. The solution consis
four uniform flow regions separated by three non-linear singular waves: a shock, a slip
and an expansion wave, with the slip line situated in between the shock and the expal
wave (Fig. 1).

The solution to the Riemann problem foxth < 1 is now given in detail:

(a) The Eigenfields

The eigenvalues of Eq. (52) af@ < h < 1)

0y = ¢ _Ah)sw (multiplicity of 2)

op = ;Kl— hyo =+ a]. (56)

Their corresponding right eigenvectors are
r1=(0,100"
(57)
r2=(0,0,0,1)"

for o, and
1 1 \T
rr=—,1,+—,0 58
. (a2 » ) (58)

foro.. Itis easy to see that the eigenfieldis linearly degenerated, whereas the eigenfielc
o+ are genuinely non-linear.

(b) Smooth Solutions

The smooth solutions for the eigenfielels are determined from

d _ 1

dp — a?

do _ 4 1

do — 41 (59)
dr __

ﬁ_O.

The solution forp, w, andr relates the flow stat® = (p, p, , 7)" in the expansion fan
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to the initial stateQo = (oo, Po, wo, T0)" Upstream of the fan. This solution can be easi
found and is most conveniently given in terms of the pressure #atiqp/ po as

<=

p = poc

w=w :I:Zio(%l—l (60)
0 y—la )

T = Tp,

whereay = +/ypo/po- Note thatr does not change across an expansion fan and t
Egs. (60) are identical to those of the purely 1-D unsteady flow; in particular, they
independent oK andh.

Let (1, &) be a general point inside the expansion fan. The slope of the characteris
given by

s _ &
dr A
The solution for flow inside the fan is

= 04+. (61)

2y

_ 2(1—h) -1 y-1
p= po{y—2h+1 + e (L —Meo — %%)}V

1
p = poct? (62)
w:a)oi%(a%—l)

T = 1p.

If we puth=0in (62), we recover the solution as obtained in the Eulerian coordinates
it should.
For discontinuous solutions, we start from the Rankine—Hugoniot conditions for (52

cAlp] = (1 —= ) Fpao]

cA[pw] = (1 —h)paw® + p]
CcAlpt] = S(1 - h)[pwr]
cAlpe] = §(1 - h)pwe+ wp],

(63)

where [] denotes the jump across the discontinuity whose speed is denoted @§/d .

(c) Shock Waves

We denote the pre-shock (upstream) flow stat€gy= (oo, Po, o, 70)" and the post-
shock (downstream) flow state I§y= (o, p, , 7)7, respectively. Then the shock jumg
relations can be expressed in termsef p/ po as follows:

_ aly+D)+y—-1
P =P —D+y+1

w = wy=x Sola—1) 64
0= /ey thty-D (64)

T = 10.

Again, we see that does not jump across a shock and that Egs. (64) are identical to tt
of the purely 1-D unsteady flow; in particular they are independeKt afdh.
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(d) Slip Lines

In this case, we get

{ P = Po (65)

w = wo

but the density jump and tangential velocity jump are arbitrary. Once again, we note
(65) are identical to the purely 1-D flow; and in particular they are independekt of
andh.

In summary, we note that for the flow variabl®s= (p, p, , v)' their relations across
a shock (64), across a slip line (65), and across an expansion wave (60) hold separat
their regiong < 0 or¢ > 0 and are all independent of the values of the geometric variab
K = (A, B, L, M)T andh, provided that the expansion wave lies entirely in the regien0
or entirely in& > 0. On the other hand, shock speed, slip line speed, and the structur
the flow inside the expansion fan (62), e.g., fan width and location, are dependent or
values ofK andh. Such dependence would be needed to construct the complete Rier
solution fori € (1) and for all¢ values. But, in using the Godunov scheme to advan
the solution fromh.=0to A = Ak we need only the flow variabl€® at the cell interface
& =0 (to compute the fIU)F ) which are entirely independent of the valuekoaind
h and are continuous across the interface, provided that the expansion wave lies entiri
§<0oré=>0.

For instance, to fin@|: —o in (1), we consider the generic case shown in Fig. 1. W
start by assuming a valug* for pressure at region 3, i.epz = p*; then on the one hand
p2 = p* and fromQ, and p, we can determin® in region 2 (we use (64) ip, < p*, and
(60) if p, > p*). On the other hand, fro®, and p; we can determin®3 in region 3 (we
use (64) ifp; < p*, and (60) ifp, > p*); we then compare, with ws: if w, = w3, the initial
guessp* is the correct value for pressure in region 3 &at the interface is completely
determined. lfw, # w3, we go back to adjugp* until w, = w3 is reached.

This process is formally done using the Newton method of iteration to find the roots
the non-linear equation.

slip line

| expansion
shock

(Q.K.n) 0 (Q,. K,h)

FIG. 1. Generic structure of Riemann solution: special case.
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slip line

\ expansion
shock |

(Qf’Kf’hf) 0 (Qr’Kr’hr)

FIG. 2. Generic structure of Riemann solution: general case.

6.2. General Case(K, h), # (K, h),

This case is sketched in Fig. 2. It is the Riemann problem that would arise in a pt
Eulerian computation if the space coordinates were not Cartesian but were curvilinea
In this case, we first solve the problem with the data

w0 JQeKehy),  §<0
QK= {(Qr, Ke, hy), £>0. (66)

The problem is solved as explained in Section 6.1 above. In particular, the flow vafabl
at the interfacé& =0 are independent &€, andh,, but are completely determined kY
andQ; . Now, when we changé, h,) for & > 0to (K, hy), the flow variable® até =0
are not changed since they are independent of the geometric varialaledh (as noted
in Section 6.1), provided that the expansion wave lies entirely in the ré&giof or in the
region& > 0. In the rare case when the expansion fan covers the inteffat® we see
from (62) that the pressure there dependfi@nd we make an additional approximatiol
thath = %(h[ + hy) is used for calculating in (62). In this way we obtain the Riemanr
solution forQ at the interface.

To summarize, in computing the interface flow varialieaté = 0 for the Godunov flux
the geometric variabld§ andh on the two sidesg < 0 andé > 0, are never used and only ¢
conventional 1-D unsteady flow Riemann problem is solved, whose solution is comple
determined by the initial data of the flow field, i.€; andQ, (atA = 0)

7. NUMERICAL PROCEDURE

The numerical procedure of the Godunov/MUSCL scheme can now be summarize
follows:

Step 1: Initialization. Assume that the initial conditions of a flow problem are giver
t=0(=0) in the x—y plane. Then an appropriate- coordinate grid is laid on the
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x—y plane (for instance, we take and n equal to the arclength of their correspond
ing coordinate line on the-y plane), withé =&g, &1, &2, ..., &m, =10, 11, 12, - - - » Iy
and the curveé =& (or n =ng) coinciding with the solid surface if there is one. Henc
K?, as well as the flow variabl@?; = (0°, p° u°, v°); is obtained by averaging the
given flow over the computational cell, j). They are used together wilﬂrﬁj =0 as
initial conditions. Subsequentlj:‘;I jpi1=12...,m j=12...,n, are available. For
example, if we choosé andn to be the respective arclengths of theand y coor-
dinate lines then, from (7)Kﬁj =(1,0,0,1)7 and Eﬂj follow from its expressions
in (12b).

Step 2: The operatiof, for marching fromi* to Akt2 =2k + Ax k=0,1,2,.... We
first take

(Ki,j (), hi j(0)) = (Kij059, hi j(39) (67)

to be constant over the invervlf < 1 < Akt1. Then for every pair of adjacent cells j)
and(i +1, j),

(1) Do a MUSCL type data reconstruction in a component by component man
For example, in th& direction, letf be any of the above physical variablesp, u, and
v; then, instead of assuming a uniform state in the agéll$) and(i + 1, j), we assume
linearly distributed states and use linear extrapolation to determine cell interface flow \
ables: fy = fi 1 —0.5(fi2j — fipe ™) with r™=(fiyr; — fij)/(fiyzj — fiyn))
and f, = fi,j + 0.5( fi,j — fi,l,j)¢(r‘) with r~ =(fi+1qj — fi,j)/(fi,j — fifl,j)- where
¢ (r) = max(0, min(1,r)) is the minmod flux limiter and subscriptsand ¢ of f corre-
spond to right and left states, respectively.

(2) Define the normal direction of the cell interfage. 1] between the two adjacent
cells(i, j)and(i +1, j) as

_ (V)i j + (VE)is1j
(V&) + (VE)itjl’

(68)

i.e., the average ofV&); ; and(V&); 1. Project the velocity vectog = (u, v) into the
normal and the tangential componettsandzt) using Eqg. (46).

(3) Solve the Riemann problem of (53) as explained in Sections 6.1 and 6.2 to
the interfacial flow variablegp, p, , 7)T and hencép, p,u, v)" até = §i+%!j . These are
constants and will be denoted by, , 1 ;.

(4) UpdateKk; toKf!* as follows:
k+1 k
A _ A +A)»khlk.<ui+%,j_ui—%ﬁj>
ott) "\t ) a8 g
('-ik,Tl> B <'—=‘.J )
Mi MK,

(5) Calculate the first four components of the cell interface flux. For instance,
secondcomponent of the interface fIEDgr1 . is evaluated as

(69)

pi+%,i(1_hik,1)( i+3 JMk+1 Ui+l JLk+1)+p|+ JMKH' (70)
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(6) Update the conserved variabeg in the physical conservation laws (40) using

AN /it ki d
EiI(Jle = Ei;i.j CAE (Fi:;j - Fijg,j)' (71)

(7) DecodeEs! to getQ 1!, usingA = AGTMITT — BIGTLITL

(8) Apply Strang splitting, Eqg. (39), to advanQirfj to Q:‘fj“l.

(9) Updateh; to hii* by solving Eq. (27), using the updated val@s * andK ™
in its coefficients. (Note: This step (9) is, of course, to be bypasdedifonst is assumed
in the computation.)

(10) Calculate the grid in the—y plane at\**:

Xt =xt + 3 (hKj Ul + hictulgt) ax
K+1 _ (72)

K | 1(rk .k K+1 kel
Yii =VYij+ z(hi,jvi,j +hi,-}_ Ui,T )AA.

By a grid we mean the lines joining the cell centers, not the cell interface lines.

We remark that the grid in the physical plane is not used in the subsequent col
tation (only the values oK are used) as the whole computation is carried out in t
transformed plane (thé—n plane). So, this step (10) is optional. However, the grid i
formation is useful in computing steady flow as an asymptotic state of unsteady flov
large A. In this case to determine if a steady state is reached, which means the flc
every fixed location in thex—y plane does not change with increasing time, we shot
compare the flow variablg3 at the same fixed poirtk, y) in the physical plane and not at
the same pointé, n) in the transformed plane; the latter are simply the pseudo-partic
whose positions in th&-y plane in general move with and never reach an asymptoti
state.

After this, we repeat Step 2 to advance the solution furth@ktd, and so on.

8. TEST EXAMPLES

In this section, the unified coordinates approach is tested numerically on four exam
Two of them are unsteady flows and the other two are steady flows which are comy
as asymptotic states of unsteady flow for large tignes 1.4 is used in all the cases. The
numerical results are then compared with the exact solutions, experimental results, or
Euler solver’s solutions wherever available. In addition, example 3 is chosen for the
convergence test. In all the cases, the effecth of the computational robustness an
accuracy are discussed.

The first example is a two-dimensional steady Riemann problem generated by two
form parallel flows as

(0.25,0.5,7,0), y>0
(p.p, M, 0) =

(1,1,24,0), y <0,
whereM is the Mach number ané the flow anglep = tarr(v/u). The flow contains
a shock wave, a slip line, and an expansion wave (Fig. 3). The slip line is sensitiv
the dissipative property of the numerical methods. Since the analytical solution for
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p=0.25
p=0.5
M=7.

p=1. — Expansion

FIG. 3. Sketch of a steady Riemann problem.

problem is available, it is an excellent benchmark problem for the verification of num
ical methods. In the computation, the steady flow is achieved with time marching u
the flow structure and the variables do not change with time. A grid of 600 with
A& = An=0.01 is employed in the computation. Initially, a grid wittx = Ay =0.01 in
the physical plane is laid over a domain{ff< x < 0.6, —0.5 <y <0.5}. The initial data
are given at each cell according to its positioryis 0 ory < 0, representing cell-average
values. The physical domain will change with time according to the pseudo-particle’s
locity hq if h is not zero. If we follow the computational cells (pseudo-particles), the
will move out of the initial physical domain, and it would be difficult to have a steac
state of flow in the original physical domain. To avoid this, a special technique called
“motionless viewing window” is applied as in the classical Lagrangian method. Acco
ingly, the column of cells which have moved out of the original physical domain to t
right is deleted, while a new column of cells is added at the input flow boundary on
left.

For this problem, we first compute the flow by the well-known solver CLAW develop:
by R. J. LeVeque based on Eulerian coordinates. Figure 4 shows its density distribt
compared with the exact solution. It is seen that the slip line is badly smeared and
computed density has a dip near the slip line.

In Figs. 5a to 5d we show computed density using our unified code£o0, h = 0.25,
h=0.5, andh =0.999, again compared with the exact solution. We see that the result
h =0 (Eulerian coordinates) is similar to those of LeVeque (Fig. 4), except the dip is n
somewhat less severe. This could be attributed to the fact that we use the exact Rie
solution, whereas LeVeque uses Roe’s approximate Riemann solution. However, the
poor resolution of the slip line is a common feature of any method based on Eule
coordinates as a result of Godunov averaging across slip lines which, in general, d
coincide with (Eulerian) coordinate lines. A comparison of Figs. 5a to 5d also shows
the slip line resolution improves with increasihgrom h=0 to h=0.999, as expected.
It is worth noting that even wheh is small, the slip line resolution is much better thar
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FIG. 4. Density distribution in a steady Riemann problem computed by LeVeque’s CLAW code.
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FIG.6. Density distribution in a steady Riemann problem computed by the present unified cotiehitben
to preserve grid angles, Eq. (27).

that using Eulerian coordinates. This is because the flow is steady and the slip line:
incide with the streamlines which, in turn, coincide with the gird lines, thus avoiding t
Godunov averaging across slip lines, as pointed out earlier in Section 4.2. The comp
times for these four cases are the same and are approximately equal to that for the C
code.

Figure 6 shows the computed density using the grid-angle presdr@agetermined by
Eqg. (27), which is solved at each time step using the method of characteristics. Whils
slip line resolution is seen as less sharp than that f010.999, its predicted density in the
uniform flow region between the shock and the slip line is better. The computing time
about 1-2% more than that required in a Eulerian code or ih taeconst cases. The bulk
of computing time is spent on solving the Riemann problems, and the excessive compi
time is spent on solving Eq. (27) for.

All the computations started with the Eulerian grid (Fig. 7a). The flow-generated gri
i.e., the lines joining the cell centers, at steady state are shown in Figs. 7b to 7d. We
that: (a) the grid using grid-angle preservimgs everywhere orthogonal, (b) a seemingly
small change from the initial grid (Fig. 7a) to the final grid (Fig. 7d) has resulted in gr
improvement in computational accuracy (compare Fig. 6 with Fig. 5a), and (c) the grids
h=0.5 andh =0.999 are severely deformed near the slip line, and such grid deformat
causes inaccuracy locally, as seen in Fig. 5d.

Finally, Fig. 8 shows the computed density using the steady flow code of Hui and (
[15]. Itis clearly the best result and requires much less computing time. Its sharp resolt
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FIG. 7. (a) Grid forh=0 (Eulerian), also initial grid for all cases in steady Riemann problem. (b) Flo
generated grid in a steady Riemann probléms; 0.5. (c) Flow-generated grid in steady Riemann problen
h=0.999. (d) Flow-generated grid in steady Riemann problechosen to preserve grid angles, Eq. (27).

of slip line is a consequence of using pseudo-particle coordinates, but its sharp reso
of shock wave is the result of applying an adaptive Godunov scheme. However, the s
code [15] is applicable only to purely supersonic and steady flow.

The second example is the supersonic flow passing through a channel with a
segment. A ramp of I5is located at the bottom wall between=0.5 andx=1. The
top wall and the other part of the bottom wall connecting the ramp are flat and
allel to each other (Fig. 9). When a flow &fi =1.8 passes through the channel, a
oblique shock, a Mach stem, a slip line, and reflected shocks are generated. The
putational grid is 180x 50 with A& = An=0.02. Initially, let Ax= A&, and Ay is
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FIG. 8. Density distribution in steady Riemann problem computed by the steady code of Hui and Chu [1!

calculated according to the distance between the top and bottom wall divided by
grid number in then direction. The initial grid system is shown in Fig. 9. A physica
domain{0 < x <3.6,0<y < 1.}is given initially and thenotionless viewing windotech-
nique is applied. The initial flow datép, p, M, #) = (1, 1, 1.8, 0) are given at each cell.
This flow is also imposed as the boundary condition at the inflow boundary, while at
outflow boundary a zero-gradient condition is imposed. The flow approaches its ste
state asymptotically with increased time. We test two situations. First, wehtak@999.
Figures 10a to 10c give the pressure and Mach number contours and the flow-gene
grid at steady state. Although the grid is relatively coarse, all the flow features are \
captured: the Mach stem is about 20% of the inlet height; the oblique shock wave,
corner expansion waves, and the reflected shock waves between two flat walls ai
well resolved. Particularly, the slip line stem from the triple point is captured clear

Initial grid

T
i Eaan
T:H'T

FIG. 9. Initial grid for channel flow problem.
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FIG.10. Computed steady channel flow using the present unified codenwith.999. (a) Pressure contours,
(b) Mach contours, and (c) flow-generated grid.

However, the pressure near the slip line is not smooth enough and this is due t
severe grid deformation there as seen in Fig. 10c. A notch at the upper right corn
Fig. 10c is due to the slowdown of the flow behind the Mach stem. Second, a grid-a
preserving method is applied to compute the channel flow (Fig. 11)hTdguation (27)
is solved in an iterative way. It is noticed that the flow-generated grid is orthogonal ev
where. This is because the grid at the inlet is orthogonal, and the grid angles are pres
while they move downstream with the pseudo-particles. The flow structure is as well
tured as in the cage=0.999. What is more, the pressure is smooth at the slip line, a
should be.

The third example is the Mach reflection of a shock wave from a wedge. It is an
steady flow: a plane shock &fl =1.3 moves from left to right across a wedge of 25
generating Mach reflection. The initial grid of 280100 with A& =0.01 andA»n = 0.0075
is laid similarly as in the second example. The initial flow state is givetpag, u, v) =
(1/1.4, 1, 0, 0) everywhere apart from that at the input boundary, where the flow stat
(p, p,u, v) =(1.2893 1.5157, 0.44231, 0). We takeh to be Q 0.999, and grid-angle pre-
serving. The Mach number contourstat 1.25 are shown in Figs. 12a to 12c. While
the flow features are well captured in all three cases, the slip line stemming from
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_

FIG.11. Computed steady channel flow using the present unified codéhweltlbsen to preserve grid angles,
Eq (27). (a) Pressure contours, (b) Mach contours, and (c) flow-generated grid.

triple point is a little more smeared with= 0 than the other two cases. With=0.999,
the normal shock is sharper, because the grid automatically becomes denser ne:
shock.

To demonstrate the convergence of the computed results as the grid is refined, w
a finer grid (400 x 200) and the grid-angle preservingand compare our results with
experiment (Fig. 13a) [27]. The same code is ruh+461.25. The shock wave and the slip
line become sharper (Fig. 13b) with the refinement of the grid. In addition, they all ag
with experimental observation.

The last example is an interesting implosion/explosion problem. It is an unsteady f
in a two-dimensional container. Inside the container, the gases at rest are separate
two regions with a square diaphragm (Fig. 14). The centers of these two squares coin
At t =0, the diaphragm is ruptured, and the inner and the outer gases begin to inte
with each other. Since the flow is confined with solid walls, it will be reflected from tt
walls continuously and become more and more complex. In our test, we choose the
tial flow state as follows: for the inner regiorp, p, u, v) = (0.14, 0.125 0, 0), and for
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FIG. 13. Mach reflection of a shock wave. (a) Shadowgraph showing a vertical plane shock wave \
M = 1.3 striking a 25 wedge, producing a reflected wave, a slip line, and a Mach stem normal to the we
(b) Computed Mach contours using unified code witihosen to preserve grid angles, showing excellentagreeme
with observation (grid: 40& 200).
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FIG. 14. An implosion/explosion problem showing the initial state and initial grid.
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FIG. 15. Flow-generated grid at=0.75 in an implosion/explosion problem, (a)}=0.7, (b)h=0.9, (c)h
chosen to preserve grid angles, Eq. (27).

the outside region(p, p, u, v) = (1., 1., 0., 0.). Initially, a uniform grid of 60x 60 with
A& =An=Ax=Ay=0.01is given (Fig. 14). We test this example witk=0, h=0.7,
h=0.9, and the grid-angle preservihgEq. (27). Of course, the computer code can run no
stop wherh = 0. But whenh = 0.9, the code can run only untik=0.75; soon afterwards it
breaks down. We also note that in the Lagrangian case [28] which correspdmesltat
breaks down at an earlier time= 0.6. This is because the computational cells move wi
the pseudo-particles and for largecan become severely deformed. If we redhcsay
h=0.7, the code can run longer urtti= 1.7. This shows that smallércan delay the severe
cell deformation, but cannot remove it. With the grid-angle preserving method, which ki

FIG. 16. (a) Evolution of pressure contours in an implosion/explosion problem. (b) Evolution of Me
contours in an implosion/explosion problem.



630 HUI, LI, AND LI



UNIFIED COORDINATES FOR THE EULER EQUATIONS 631



632 HUI, LI, AND LI

t=10.
t=10.

Prasssure uf t=10.00(Angin Prese~ving)
4 )

D

5 £

¥

il :

(=]

: = g
3 E] El

t=3.

2 g s 2

o8
ashl
04

FIG. 17. Comparison of pressure and Mach contour in an implosion/explosion problem.

the grid regular, the code can run for a long time (we have computée-tt0) without
any indication of severe grid deformation. Figures 15a to 15c give the grids=a2.75
for different cases. We see that irregular grids prevail whég constant and a regular
grid prevails wher satisfies the grid-angle preserving property. Figures 16a and 16b ¢
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computed pressure and Mach contours at different times ug @5. They display clearly
the flow evolution process. Figure 17 compares pressure and Mach number conto
t =3, 5, and 10. We see that as time increases pressure tends to a uniform distribution
Mach number diminishes, reflecting the process of conversion of kinetic energy to he:
expected.

9. CONCLUSIONS

A unified coordinate system has been developed to describe fluid motion in whict
flow variables are considered to be functions of time and of some permanent identific
of pseudo-particlesvhich move with velocityhq, g being the velocity of fluid particles. It
includes the Eulerian coordinates as a special case whked and the Lagrangian when
h=1.

Systematical comparisons show that with increaginjom h=0 to h=1, slip line
resolution improves while grid deformation gets worse. It has been shown that for 1
dimensional flow the choice df to preserve grid angles results in a coordinate syst
which keeps the grid regular, thus avoiding the severe grid deformation in the Lagrar
coordinates, yet it retains sharp resolution of slip lines, especially for steady flow. |
therefore, superior to both the Lagrangian and the Eulerian coordinates.

Extension to three-dimensional flow is being carried out. On the other hand, for «
dimensional flow the Lagrangian system of coordingkes 1) is shown [21] to be the best
in slip line resolution. It can also be used to incorporate a shock-adaptive Godunov sc
to produce infinite shock resolution as well.

However, for two- and three-dimensional unsteady flow the system of Euler equa
of gasdynamics written in Lagrangian coordinates is only weakly hyperbolic, lackin
complete set of eigenvectors, with all its possible negative consequences in num
computation.

APPENDIX

Conventional Lagrangian Equations of Motion for an Inviscid Perfect Gas

In this Appendix we re-write the conventional Lagrangian equations of motion for
inviscid perfect gas in conservation form and show that they are just a special ca
system (8) or (12) wheh =1. We consider the unsteady two-dimensional smooth flc
of an inviscid perfect gas obeying thelaw. The three-dimensional case can be treat
similarly. The conventional Lagrangian coordinatesb) are the Cartesian coordinate:
(x, y) of fluid particles at initial timé = 0; i.e.,(a, b) = (X, Yy)|t=0. The continuity equation,
the momentum equations, and the energy equation are, respectively,

(X, y)
= b Al
'Oa(a,b) po(@, b) (A1)
3%x  1lap
—F A2
8t2+p8X 0 (A2)
2
1
0y Ly (A3)

e pay
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aIn(p/p”) 0 (Ad)
at 7

wherep andp are pressure and density of the gas. Equation (A4) states that the entroj
constant following a fluid particle, which is true for smooth flow.
The pressure gradient terms in (A2) and (A3Xiyspace can be eliminated to yield

9°x9x | 0%ydy  1lap _ 0
ot29a  0dt29a poa

9°x9x | 9%ydy  1ap
ot20b ' 9t29b ' pob

(AS)
0. (A6)

Furthermore, in order to render this system of second-order non-linear partial differel
equations a system of first-order quasillinear ones we introduce new dependent vari
u, v, A, B, L, andM through the following equations:

X
— —u=0 A7
5r Y (A7)
ay
— —v=0 A8
ot " (A8)
d
X _A=0 (A9)
fda
ay
Y _B=o0 (A10)
Ja
ax
— —L =0 All
3b (A11)
Y M=o (A12)
ab -
Then after taking’, (A1) becomes
A
9p8) _ g (A13)
ot
where
A=AM-BL
and (A9)—(A12) become
A
0A_ M _y (AL14)
ot Ja
B _v_, (AL5)
ot Ja
oL au
— ——=0 Al6
ot ob ( )
oM d
IV _%Y o (A17)
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Furthermore, (A5) and (A6) become

au av ap
A— +B— — =
< E)tJr 8t)+aa

av ap
L— M— — =
< ot 8t)+8b

which may also be written as

d(pAw) 9P 0P

=0
ot oa 8b
d(pAv) ap ap
—-L—+A—=0.
ot oa + ob

By use of (A9)—(A12), the last two equations are equivalent to

d(pAu) 3(|0|V|) d(pB)

= 2 5 =0 (A18)
d(pAv) 3(PL)  (PA) _ (A19)
ot da db

Evidently, Egs. (A7) and (A8) are decoupled from (A13) to (A19) and (A4). The eic
equations (A9) to (A15) and (A4) form a closed system and can be shown (see
low) to be just a special case of Eq. (12) with=1. After this system is solved for
(p, p,u, v, A, B, L, M), the functionsx(a, b, t) and y(a, b, t) can be found from (A7)
and (A8). This process is the same as the transformation (18) together with

oL 9A

- _ = =0 A20
(8a ab)t 0 (A20)
oM 0B

-7 _ 7= = A21
(aa E)b)t 0 0 ( )

which are easily ensured computationally.

To show that the system of equations (A13) to (A19) and (A4) is equivalent to (12) v
h=1, we first identifyr with t, & with a, andn with b. Then (A13) is the first equation
of (12), and (A14) to (A17) are the same as the last four equations of (12). Furthern
(A18) and (A19) are the same as the second and third equations of (12). We now sho
the fourth equation of (12), i.e., the energy equation

d(pAe)
ot

d d
+£[p(uM—vL)]+%[p(Av— Bu)] =0, (A22)

is equivalent to (A4) as follows. Thus (A22)ux (A18) — vx (A19) yields

PA 9 [ p au
—18t( >+p pL pBab+pA8b

- a0 <E>+ 8 (A23)

0=

y—1at pat’
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after making use of (A14) to (A17). Using (A13), Eq. (A23) becomes

TP _o (A24)
at  pv

which is the same as (A4).

In conclusion, (a) the system of conventional Lagrangian equations of motion [(A
(A4)], i.e., the system of Euler equations in conventional Lagrangian coordinates, is
written in conservation form [(A13)—(A17), (A18), (A19), (A24)]; (b) it is just a specia
case of Eq. (12) witth = 1; and (c) it is thus weakly hyperbolic.

The special choice ofa, b) = (X, y);—o corresponds to choosirg=M =1 andB =
L =0. Such a choice of coordinates, however, offers no advantage in computation.
instance, if the fluid initially occupies a domain that is complicated geometrically, t
domain in the computationab plane is the same complicated domain. But with a suitab
choice of the Lagrangian coordinatés ), one can simplify the computational domain in
theé&n plane to a rectangular domain.
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